

Jigsaw 2E

1. [Hore Section 2.2] How many distinct chemical shifts would you expect to find in the ^1H spectra of the three isomers of dibromobenzene? *See also: Jigsaws 2A.1, 2B.3 2C.2, and 2D.1.*
2. [Hore Section 2.3] For each of the following sets, rank the options from highest to lowest ^1H chemical shift. Assume the diamagnetic contribution is the dominant contribution. For each answer, explain why.
 - a. CH_4 , CH_3Cl , CH_2Cl_2 , and CHCl_3 .
 - b. The ortho, meta, and para protons in styrene.
 - c. The protons in $\text{CH}_2\text{BrCH}_2\text{CH}_3$.
3. * [Hore Section 2.1, Week 2 Slide 25, and Keeler Section 4.2] The B_0 field induces precession of magnetization around the z-axis at the Larmor frequency, $\omega_0 = -\gamma B_0$. Here we neglect the effect of relaxation.
 - a. Starting with the magnetization along the z-axis, what is the direction of the magnetization of a ^{13}C site after one second in a 9.4 T magnetic field? The gyromagnetic ratio for ^{13}C is $1.071 \times 10^7 \text{ rad}\cdot\text{s}^{-1}\text{T}^{-1}$.
 - b. Starting with the magnetization along the x-axis, what is the direction of the magnetization of a ^{13}C site after one second in a 9.4 T magnetic field?